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a b s t r a c t

This study sought to construct a transcriptomics-based framework of signal transduction pathways, tran-
scriptional regulatory networks, and the hypothalamic-pituitary gonadal (HPG) axis in zebrafish (Danio
rerio) to facilitate formulation of specific, testable hypotheses regarding the mechanisms of endocrine
disruption in fish. For the analyses involved, we used data from a total of more than 300 microarrays repre-
senting 58 conditions, which encompassed 4 tissue types from zebrafish of both genders exposed for 1 of
3 durations to 10 different test chemicals (17�-ethynyl estradiol, fadrozole, 17�-trenbolone, fipronil,
prochloraz, flutamide, muscimol, ketoconazole, trilostane, and vinclozolin). Differentially expressed
genes were identified by one class t-tests for each condition, and those with false discovery rates of
less than 40% and treatment/control ratios ≥1.3-fold were mapped to orthologous human, mouse, and
rat pathways by Ingenuity Pathway Analysis to look for overrepresentation of known biological pathways.
To complement the analysis of known biological pathways, the genes regulated by approximately 1800
transcription factors were inferred using the ARACNE mutual information-based algorithm. The resulting

gene sets for all transcriptional factors, along with a group of compiled HPG-axis genes and approximately
130 publicly available biological pathways, were analyzed for their responses to the 58 treatment condi-
tions by Gene Set Enrichment Analysis (GSEA) and its variant, Extended-GSEA. The biological pathways
and transcription factors associated with multiple distinct treatments showed substantial interactions
among the HPG-axis, TGF-beta, p53, and several of their cross-talking partners. These candidate net-
works/pathways have a variety of profound impacts on such cellular functions as stress response, cell

cycle, and apoptosis.

. Introduction

Endocrine-disrupting chemicals (EDCs) are broadly defined as
exogenous agents that interfere with the synthesis, secretion,

ransport, binding, action, or elimination of natural hormones
n the body responsible for the maintenance of homeostasis,
eproduction, development, and/or behavior” (Kavlock et al.,
996). A more pragmatic, albeit narrower, definition of EDCs is

Abbreviations: DEG, differentially expressed gene; EDC, endocrine-disrupting
hemical; EE2, 17�-ethynyl estradiol; E-GSEA, Extended Gene Set Enrichment
nalysis; FAD, fadrozole; FIP, fipronil; FLU, flutamide; GSEA, Gene Set Enrich-
ent Analysis; HMR, human–mouse–rat; HPG, hypothalamic-pituitary–gonadal;

PA, Ingenuity Pathway Analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes;
OAs, modes of action; KET, ketoconazole; MUS, muscimol; PRO, prochloraz; TF,

ranscription factor; TRB, 17�-trenbolone; TRI, trilostane; VIN, vinclozolin.
∗ Corresponding author. Tel.: +1 513 569 7862; fax: +1 513 569 7115.

E-mail address: wang.rong-lin@epa.gov (R.-L. Wang).

166-445X/$ – see front matter. Published by Elsevier B.V.
oi:10.1016/j.aquatox.2010.02.021
Published by Elsevier B.V.

compounds which interfere with the vertebrate hypothalamic-
pituitary–gonadal (HPG) axis, leading to abnormal function and
development (US EPA, 1998). Common sources of environmental
EDCs include effluent from sewage treatment plants, agricultural
runoff, and industrial discharges. Since the mid-1990s, there have
been increasing concerns regarding EDCs and their potential harm-
ful effects on humans and wildlife, including fish (WHO, 2002).
Results so far from human epidemiological studies are largely
inconclusive (WHO, 2002; Janssen et al., 2007; Hauser et al., 2007),
although laboratory animal studies have demonstrated a linkage
between low-dose EDC exposures and effects on a variety of repro-
ductive and developmental endpoints (Melnick et al., 2002; WHO,
2002). In the field, relatively clear instances of impact have been

found in individual fish exposed to estrogenic EDCs, or even an
entire wild fish population subjected to a low level, chronic expo-
sure to the potent estrogen 17�-ethynyl estradiol (Kidd et al., 2007).
Further understanding of population-level impacts of EDCs in fish
is, however, dependent on an enhanced knowledge of EDC modes

http://www.sciencedirect.com/science/journal/0166445X
http://www.elsevier.com/locate/aquatox
mailto:wang.rong-lin@epa.gov
dx.doi.org/10.1016/j.aquatox.2010.02.021
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f action (MOAs), and development of mechanism-based indicators
uitable for field work that enable linkage of exposure to adverse
ffects at both individual and population levels.

Over the years, there has been significant progress in elucidating
he MOAs for a range of HPG-active EDCs. These often involve chem-
cal interactions with nuclear receptors and subsequent activation
r suppression of their target genes (Choi and Lee, 2004; Manning,
005; Tabb and Blumberg, 2006; Ankley et al., 2009). Perhaps the
est-known examples in this regard are androgen and estrogen
eceptors in liver, gonad, and other responsive tissues. Other EDC
argets that have been comparatively well studied are steroido-
enic enzymes, including some in the cytochrome P450 family (e.g.,
YPs 11, 17, 19 or 21) and hydroxysteroid dehydrogenases (HSDs 3,
1,17, and 20) in gonadal tissue (Sanderson, 2006). Other possible
ndocrine MOAs that have received less attention include alter-
tions of receptor activities without ligand binding, modulation
f neuroendocrine regulation via interactions with neurotransmit-
er receptors (e.g., GABA or dopamine receptors), modulation of
o-activators to receptors, changes in nuclear receptor turnover,
nd DNA methylation (Tabb and Blumberg, 2006). Little is known
t present about the wider biological context under which these
OAs operate, including their regulatory control by signal trans-

uction pathways and transcription factor (TF) networks leading to
ownstream manifestations of phenotypic changes at various lev-
ls of biological hierarchy. A TF network is defined here as a group
f genes with ordered interactions and regulated by a common TF.

Elucidation of signaling pathways and TF networks affected
y EDCs could be successfully addressed by examining transcrip-
omic responses in species such as zebrafish (Danio rerio). Among
he several fish species with a sequenced genome, zebrafish is
rguably one of the best model systems for ecotoxicology. It
as relatively abundant genomic resources such as genetic maps,
utants, and markers available (Sprague et al., 2006), and a fairly

ecent divergence from fathead minnow (Pimephales promelas),
ne of the best-studied species in aquatic toxicology (Ankley and
illeneuve, 2006). Yet despite years of effort, less than half of iden-

ified protein-coding genes in zebrafish are annotated, with only
00 plus curated biological pathways, mostly metabolic, openly
vailable (Kyoto Encyclopedia of Genes and Genomes; KEGG,
ww.genome.jp/kegg). The relatively sparse genome annotations
ot only make it difficult to frame results of toxicogenomics studies

n a meaningful biological context, but also impede the formulation
f new hypotheses.

Construction of a biological framework, defined as a set of
ignaling pathways and TF networks prioritized by their statis-
ical associations with chemical treatments, would expand the
cope of investigations of EDC regulatory mechanisms from a rela-
ively narrow view of known HPG-axis-related targets to multiple
ell-annotated pathways and a still greater number of tentative

experimentally unconfirmed) networks, enabling new hypothe-
es to be formulated and tested for the mechanisms underlying
pecific toxic effects. From a systems biology perspective, signaling
athways and TF networks are at the center of a complex biologi-
al system. A small number of generally well-conserved signaling
athways across animal species ultimately rely on TFs varying in
ctivity and specificity for sufficient regulatory complexity, which
s likely responsible for much of organismic complexity in phe-
otypes and adaptations throughout animal kingdom (Levine and
jian, 2003; Pires-daSilva and Sommer, 2003; Chen and Rajewsky,
007; Vaquerizas et al., 2009). As such, signal transducers and TFs
rovide critical links between chemical exposures and resultant

oxic effects manifested at various levels of biological hierarchy,
rom molecular to organismic.

A mechanistic understanding of exposure and effect at the level
f signal transduction and transcriptional regulation is significant
or several reasons (Ankley et al., 2009). As upstream triggers of
ology 98 (2010) 230–244 231

molecular regulatory cascades, signal transducers and TFs may
serve as more informative and reliable molecular indicators for
exposure assessment than target genes downstream because of
their mechanistic control of phenotypes and generally less variable
expression (Lim et al., 2009; Vaquerizas et al., 2009). Metabolism-
based computational modeling could also be made more realistic by
incorporating the aspect of gene regulatory control of the enzymes
involved, facilitating a shift in toxicity testing from in vivo apical
responses to short term in vitro testing and predictive toxicol-
ogy (NRC, 2007). Mechanistically based molecular indicators would
also allow for improved extrapolation of effects across species,
biological levels of organization, and diverse chemical structures.
Finally, given the pleiotropic nature of signal transducers and TFs,
organismic end points explicitly mapped to specific toxicity mech-
anisms may be developed by generating gene knockout mutants in
targeted pathways. An ensuing greater efficiency and accuracy in
the assessment of both EDC exposure and hazard would improve
the overall risk assessment process (Ankley et al., 2010; ECETOC,
2007).

Reverse engineering of gene networks refers to a process
through which a network of putative gene interactions is inferred
based on the observed gene expression patterns across a range
of experimental perturbations (Bansal et al., 2007). Conceptually,
genes belonging to a common biological pathway should respond
transcriptionally to experimental perturbations in a coordinated
fashion. Using annotated TFs as hub genes (i.e., TF regulators of
interest for anchoring networks by a reverse-engineering algo-
rithm), TF regulatory networks could then be inferred based on
changing gene expression profiles using computational algorithms.
Gene network construction has been under intensive study in the
past decade, with significant advancements made in algorithms
ranging from simple coexpression clustering to more sophisticated
neural networks, Bayesian networks, relevance networks, and
graphic Gaussian models (Werhli et al., 2006; Blais and Dynlacht,
2005). The performance of these algorithms depends on a combi-
nation of factors, including the scale and complexity of networks,
and quality of input data. Small scale and simple networks can be
reverse-engineered more precisely than genome-scale large net-
works, where resolving the direct regulatory interactions among
all the gene nodes remains a challenge (Hache et al., 2009; Baralla
et al., 2009; Scheinine et al., 2009; Kim et al., 2009). For our pur-
pose of constructing a small fish biological framework of signaling
pathways and TF networks, however, it is important to note that
gene membership of a network and its statistical association, or lack
thereof, with EDC treatments are more important than unequivo-
cally defining gene connectivities (Edwards and Preston, 2008).

This study is part of a larger integrated project investigating
the mechanisms of endocrine disruption by several chemicals with
known or hypothesized impacts on HPG-axis function (Ankley et
al., 2009). One of the goals of the project is to discover mechanisti-
cally based biomarkers with utility for risk assessment and develop
modeling approaches for predicting adverse outcomes. As part of
this goal, the present study seeks to construct a transcriptomics-
based biological framework composed of statistically prioritized
signaling pathways and TF networks in order to formulate specific
hypotheses for investigating EDC MOAs. The current study has five
objectives: (1) identify from better annotated human–mouse–rat
(HMR) genomes a set of biological pathways relevant to EDCs;
(2) reverse-engineer genome-wide zebrafish TF networks; (3) use
clustering analysis to characterize the interrelationships among
TF networks, KEGG pathways, and a gene collection associated

with the HPG-axis (hereafter referred to as “HPG-axis com-
piled” where appropriate); (4) prioritize TF networks, KEGG and
HPG-axis compiled by statistically associating them with EDC treat-
ments; and (5) demonstrate potential applications of candidate
pathways/networks in formulating new hypotheses for studying

http://www.genome.jp/kegg
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Table 1
A list of 58 treatments denoted by chemical, duration of exposure, gender, and tis-
sue type. EE2, ethynyl estradiol; FAD, fadrozole; TRB, trenbolone; FIP, fipronil; PRO,
prochloraz; FLU, flutamide; MUS, muscimol; KET, ketoconazole; TRI, trilostane; and
VIN, vinclozolin.

Numeric ID Treatments Numeric ID Treatments

1 EE2 48 h male brain 30 KET 48 h female ovary
2 EE2 48 h male testis 31 KET 96 h female ovary
3 EE2 96 h female ovary 32 MUS 48 h male brain
4 EE2 96 h male brain 33 MUS 96 h male brain
5 EE2 96 h male testis 34 MUS 48 h female brain
6 EE2 48 h male liver 35 MUS 96 h female brain
7 FAD 48 h female ovary 36 MUS 96 h female ovary
8 FAD 48 h female brain 37 PRO 48 h female brain
9 FAD 96 h female brain 38 PRO 96 h female brain

10 FAD 96 h female ovary 39 PRO 48 h male testis
11 FAD 96 h male brain 40 PRO 96 h male testis
12 FAD 24 h female ovary 41 PRO 48 h female ovary
13 FIP 48 h male brain 42 PRO 96 h female ovary
14 FIP 48 h female brain 43 TRB 96 h female brain
15 FIP 48 h male testis 44 TRB 96 h female ovary
16 FIP 96 h male testis 45 TRB 24 h female ovary
17 FIP 48 h female ovary 46 TRB 48 h female ovary
18 FIP 96 h female ovary 47 TRB 96 h female liver
19 FLU 48 h male testis 48 TRI 24 h male testis
20 FLU 96 h male testis 49 TRI 48 h male testis
21 FLU 48 h female ovary 50 TRI 96 h female ovary
22 FLU 96 h female ovary 51 TRI 96 h female ovary low
23 FLU 24 h male testis 52 TRI 96 h male testes low
24 KET 96 h male brain 53 TRI 96 h male testes
25 KET 96 h female brain 54 VIN 48 h female ovary
26 KET 96 h male liver 55 VIN 24 h male testis
32 R.-L. Wang et al. / Aquatic

DC mechanisms. Briefly, differentially expressed genes (DEGs)
ere identified for individual microarray-based treatments and
apped to orthologous HMR pathways using Ingenuity Pathway
nalysis (IPA, www.ingenuity.com). Additionally, hundreds of TF
etworks were reverse-engineered computationally using an algo-
ithm based on relevance networks. The interrelationships among
F networks, KEGG pathways, and HPG-axis compiled were evalu-
ted by clustering analysis. Gene Set Enrichment Analysis (GSEA,
ubramanian et al., 2005) and its variant, Extended-GSEA (E-
SEA, Lim et al., 2009) were then used to determine statistical
ssociations between these gene groups organized as individual
athways/networks and the various treatment conditions. Finally,
small set of well-defined signaling pathways and their periph-

ral TF networks are described as possible candidates for further
nvestigations into EDC MOAs.

. Materials and methods

Zebrafish exposures were conducted using 10 chemicals with
iffering known/hypothesized MOAs within the HPG-axis: 17�-
thynyl estradiol (EE2), fadrozole (FAD), 17�-trenbolone (TRB),
pronil (FIP), prochloraz (PRO), flutamide (FLU), muscimol (MUS),
etoconazole (KET), trilostane (TRI), and vinclozolin (VIN) (Ankley
t al., 2009). Details and rationale regarding experimental design,
sh exposure, and gene expression profiling including microarray
ata preprocessing are presented elsewhere (Wang et al., 2008a,b;
nkley et al., 2009; Villeneuve et al., 2009). Briefly, reproductively
ature male and female zebrafish were exposed to a continuous

ow of test chemical (two different, analytically confirmed con-
entrations and a control), delivered in water (with no solvent),
or 24, 48, or 96 h. At the end of each exposure period, fish were
acrificed in a buffered solution of tricaine methanesulfonate (MS-
22; Finquel, Argent, Redmond WA, USA) and tissues including
onads, liver, and brains (with the pituitary gland and hypotha-
amus) were collected. Total RNA isolated from selected tissue
amples was labeled and hybridized to microarrays by an Agilent
ertified contract laboratory (Cogenics, Morrisville, North Carolina
7560, USA). Expression profiling in zebrafish was achieved using
gilent two-color zebrafish microarrays (G2518A and G2519F, Agi-

ent Technologies, Santa Clara, CA 95051, United States). Data from
00 plus microarrays, representing 58 conditions (Table 1) encom-
assing the 10 chemicals, 4 tissue types, and 3 exposure durations,

n both male and female zebrafish were analyzed as part of the
resent investigation.

This investigation employed two complementary approaches
or discovery of EDC-responsive biological pathways: identification
f DEGs for individual treatments followed by mapping to orthol-
gous HMR pathways using IPA software; and linking HPG-axis
ompiled, KEGG pathways, and reverse-engineered TF networks,
ll zebrafish specific, to these treatments by GSEA. The associations
etween TF networks and the treatments were also determined by
-GSEA (described in detail below). HMR pathways were not sub-
ected to GSEA because the proprietary nature of IPA makes their
tatistical analysis outside the IPA framework very difficult. Data
nalysis procedures are summarized in Fig. 1.

.1. Mapping DEGs to HMR pathways

Text output files from Agilent Feature Extraction software were
mported into GeneSpring GX 10 (Agilent Technologies). Due to

he use of two different Agilent microarray formats over the
ourse of the study, two separate projects had to be constructed
ithin GeneSpring, the first containing data from the EE2, FAD,

nd TRB experiments, conducted using G2518A (1 × 22K microar-
ay format), and the second with data from all other chemicals,
27 KET 96 h female liver 56 VIN 48 h male testis
28 KET 96 h male testis 57 VIN 96 h male testis
29 KET 24 h female ovary 58 VIN 96 h female ovary

with G2519F (4 × 22K microarray format). A total of 16 dye swap
controls were excluded from this analysis. Since LOWESS normal-
ization is carried out for individual microarray data set by Agilent
Feature Extraction software, GeneSpring data preprocessing and
normalization were limited to value adjustment to a threshold,
ratio computing, and logarithmic transformations, with no statis-
tical estimation of missing data (i.e., imputation). The DEGs for
individual treatments were identified by GeneSpring one class t-
tests followed by Benjamini–Hochberg multiple test corrections
(Benjamini and Hochberg, 1995). Due to the impact on false discov-
ery rate (FDR) by small sample size of these treatments (Pawitan
et al., 2005), the DEGs were selected at relaxed FDRs of less than
40%, but strengthened with an additional requirement of ≥1.3-fold
change between a treatment and its control. These DEGs by treat-
ment were exclusively used for their IPA mapping to HMR pathways
only, at a P-value cutoff of 0.05.

2.2. KEGG and HPG-axis compiled

A group of 209 genes known to be involved in HPG-axis function
was manually compiled based on published literature (Villeneuve
et al., 2007). A total of 137 zebrafish pathways were downloaded
from the KEGG database in October, 2008 and used in this study.
As of July 2009, however, the number of zebrafish KEGG pathways
totaled 129, resulting from 6 new additions and 14 deletions. The
removed pathways were DRE00031, DRE00220, DRE00281,
DRE00362, DRE00521, DRE00602, DRE00626, DRE00710,
DRE00920, DRE00940, DRE00960, DRE01030, DRE01031, and
DRE01032.
2.3. Reverse-engineering TF networks

TF networks were constructed using the ARACNE algorithm
(Basso et al., 2005) which derives a transcriptional regulatory net-

http://www.ingenuity.com/


R.-L. Wang et al. / Aquatic Toxicology 98 (2010) 230–244 233

F study
d ous m
r

w
g
fi
m
w
T
t
a
(
s
p
A
2
p
l
T

t
(
(
o
b
5
i
f
t
e
a
e
i
m
s
e
v

ig. 1. The data analysis flowchart. Parallelograms are data sets used/produced in the
ashed lines representing data generated during the analyses. Squares represent vari
efer to matched descriptions in Section 2.

ork from a matrix of mutual information scores, a measure of
eneral (including non-linear) relatedness among gene pairs. The
rst step was to identify annotated TFs in the Agilent zebrafish
icroarray as hub genes. A genome-wide collection of 1939 TFs
as downloaded from www.transcriptionfactor.org (June, 2008).

hey contained Ensembl (http://www.ensembl.org) peptide iden-
ifications only, and were predicted based on zebrafish genome
ssembly version Zv7, Release 49.7 using Pfam and Superfamily
Wilson et al., 2008). The 21,322 zebrafish protein-coding, un-
pliced genes from the same assembly with Ensembl Gene ID and
eptide ID were downloaded from Ensembl/Biomart. The 21,495
gilent zebrafish microarray probe sequences were mapped to the
1,322 genes in the genome by BLASTN, yielding 11,995 unique
robe-gene matches at E values less than or equal to 1E−12. This

ed to a final linkage of 951 Agilent zebrafish microarray probes to
Fs.

The second step of TF network construction was a prepara-
ion of microarray gene expression data sets using KNNimputer
Troyanskaya et al., 2001) and several Perl scripts we developed
www.perl.org). Since the ARACNE algorithm requires a minimum
f 100 samples from the same tissue type under a variety of pertur-
ations (Margolin et al., 2006) and, in the present study, Cyanine
(Cy5) and Cyanine 3 (Cy3) labeled RNA represent unique biolog-

cal samples, 3 separate gene expression data sets were qualified:
emale ovary data in log ratios (105 samples, hereafter OvaryRa-
io), female ovary data in single channel intensities (205 samples
xcluding 5 duplicated Cy3 samples, hereafter OvaryCy5Cy3),
nd male testis data in single channel intensities (163 samples
xcluding 5 duplicated Cy3 samples, hereafter TestisCy5Cy3). After

ndividual samples were preprocessed based on Agilent recom-

ended filters, rProcessedSignal and gProcessedSignal from each
ample were assembled according to the sample tissue type into
ither an ovary or a testis data set. Genes with less than 75%
alid entries across all concatenated samples within a tissue type
, with those in solid lines representing starting data for the analyses whereas those in
ethods/procedures employed. The numbers in parentheses in boxes/parallelograms

were not considered further. Missing values for the remaining
genes were imputed separately for the ovary and testis data set
by KNNimputer, based on the corresponding expression values of
the most similar samples. Two input files were then generated
from the ovary data: OvaryRatio by value adjustment to a thresh-
old, ratio computing, and log2 transformation; and OvaryCy5Cy3
by value adjustment to a threshold, log2 transformation, per chip
normalization to 75th percentile, and per gene normalization to
the median of all samples. The TestisCy5Cy3 data set was gener-
ated from the testis data using the same normalization scheme as
OvaryCy5Cy3. After data preprocessing, each data set had only a
fraction of the original 21,495 probes/951 TF probes left: OvaryRa-
tio and OvaryCy5Cy3, 12,699 probes containing 554 TF probes;
and TestisCy5Cy3, 14,148 probes containing 690 TF probes. Since
a single TF could be represented by multiple unique probes on the
Agilent Microarray, the actual number of TF genes is less than the
stated and variable depending upon evolving gene annotations.

The latest version of the algorithm, ARACNE2, was provided to
us in October, 2008 by Manjunath Kustagi from the Andrea Califano
lab at the Center for Computational Biology and Bioinformatics,
Columbia University (New York City, NY 10027, USA). ARACNE2
was run on all three data sets along with their respective lists of
TF probes using two Linux clusters and a Condor computer grid
(http://www.cs.wisc.edu/condor). Each data set was bootstrapped
100 times and run independently, and each TF probe was used as a
hub TF once within a data set. ARACNE2 configuration parameters
were specifically calculated for each of the three data sets courtesy
of Manjunath Kustagi. Sample arguments for running ARACNE2
were “−i gene expression data set −o input $(Process).adj -p 5e-

8 -e 0.1 -r $(Process) -s a list of TFs -l a list of TFs”. It took ARACNE2
approximately 261, 178, and 441 h, respectively, to process the
OvaryCy5Cy3, OvaryRatio, and TestisCy5Cy3 data sets, yielding a
total of 554, 550, and 690 TF networks. The resulting 100 adja-
cency files, containing inferred gene interactions and their mutual

http://www.transcriptionfactor.org/
http://www.ensembl.org/
http://www.perl.org/
http://www.cs.wisc.edu/condor
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nformation scores, from each data set were combined by “getcon-
ensusnet.pl”, provided as part of ARACNE2 package, to generate
consensus adjacency file. The consensus TF-gene networks for

ach of the three data sets were converted into GSEA gene matrix
ransposed format (gmt) by replacing Agilent probes with their
ene symbols as assigned by the Human Gene Organization Gene
omenclature Committee (http://www.genenames.org), based on
gilent zebrafish annotations. Each TF network was confirmed to
ontain a unique set of gene symbols. While there are probably
arying degrees of conservation in the compositions of these TF
etworks across tissue types, due to the exploratory nature of the
urrent study, we adopted an inclusive approach where each TF
etwork was utilized as a gene set in GSEA or E-GSEA for all 58
reatments regardless of its original tissue.

.4. GSEA and E-GSEA

For GSEA and E-GSEA, 2 gene expression data sets containing
90 and 291 microarrays, inclusive of all 58 treatment groups, were
repared in single channel intensities in similar steps as described

n Section 2.3. These contained a total of 12,802 and 12,793 probes,
espectively. Both analyses were conducted based on data from
ndividual treatments in the 290 data set. The 291 microarray data
et contains an extra dye swap array from the EE2 48 h male testis
ondition in order to increase its sample size for E-GSEA of this
articular treatment.

A GSEA R script (http://www.r-project.org), GSEA-P-R.1.0,
as downloaded from The Broad Institute at http://www.broad.
it.edu/gsea/. To enable batch processing, a separate R script wrap-

er, Run Broad GSEA.r, was written with a few minor modifications
o the original GSEA R script. GSEA was conducted for each of the
8 treatment conditions using the 290 microarray gene expression
ata set, and gene sets made up of HPG-axis compiled, KEGG path-
ays, and TF networks. Each gene set needed to contain at least 15

enes, but no more than 2000, in order to be included. The test FDR
as set at 0.25, a typical significance cutoff for GSEA (and E-GSEA)

ecause of the exploratory nature of this analysis and a general lack
f coherence found in most gene sets.

GSEA associates an a priori defined set of genes to a treatment
y determining whether the gene set as a whole is statistically
nriched among the ranked DEGs between the treatment and
ts control. To handle gene sets containing both up- and down-
egulated genes as expected in a TF network, an Extended-GSEA
E-GSEA) procedure has been proposed (Lim et al., 2009), which

ncorporates the expected relationship between a TF and its regu-
ated genes derived from a TF network. To implement this method
n R, we significantly modified the original GSEA algorithm based
n the GSEA R script from the Broad Institute and two demon-
trative pieces of Matlab code made available to us courtesy of

able 2
ummary statistics of reverse-engineered zebrafish TF networks. Three microarray data se
issue types in either single channel intensities or Cy5/Cy3 ratios. The data sets OvaryCy5

Parameters

Sample size
No. hub TFs
Network size minimum
Network size median
Network size maximum
Network size average
Total no. genes networked
Total no. input genes
Gene networking frequency maximum
Gene networking frequency median
Gene networking frequency average
No. TF networks with enriched Gene Ontology biological processesa

a Conducted by web submission to http://discover.nci.nih.gov/gominer/htgm.jsp (Zeeb
ology 98 (2010) 230–244

Wei Keat Lim (Lim et al., 2009). This modified approach divides
a gene set into either a TF-activated or -repressed subset as mea-
sured by TF-gene correlation and a gene list into a chemical up- or
down-regulated subgroup as measured by signal-to-noise (SNR)
ratios. The relationships among these four groups of genes are
then individually considered in order to capture the contributions
to the enrichment statistic by both TF-activated and -repressed
genes. Additional details on the algorithm are given in Lim et al.
(2009). Where multiple probes exist in the expression data for a
given gene, as is often the case with the Agilent zebrafish microar-
ray, the one with the largest SNR in absolute value is retained
and the rest removed. Unlike the original GSEA, the sign of the
enrichment statistic for a gene set no longer indicates the up- or
down-regulation of that gene set by a given treatment. Although
no upper ceiling was imposed, each TF network must have at least
15 gene members in order to be included for E-GSEA. The E-GSEA
approach is computationally quite expensive, taking about 137 CPU
hours per treatment for 1465 TF networks on a Linux cluster with
128 Intel Itanium2 1.6 GHz processors.

2.5. Similarity comparison among TF networks, HPG-axis
compiled, and KEGG pathways

To compare similarity among HPG-axis compiled, KEGG path-
ways, and TF networks, an R script was written to calculate pairwise
Jaccard distance (Jaccard, 1901) among these pathways/networks.
Given two sets of genes from two pathways to be compared, Jaccard
distance (Dj) is defined as:

Dj = 1 − number of genes in the intersection
number of genes in the union

Two distance matrices were calculated, one for HPG-axis com-
piled and KEGG pathways only totaling 138, and the other for all
KEGG pathways, HPG-axis compiled, and TF networks combined
(1932 in total). An UPGMA (Unweighted Pair Group Method with
Arithmetic mean) dendrogram was generated from each resulting
distance matrix using MEGA4 (Tamura et al., 2007) and visualized
in Dendroscope (Huson et al., 2007).

3. Results

A TF network consists of a hub TF, as represented by a unique
probe, and all of its interacting gene targets (Margolin et al., 2006).
Although treated as a regulating hub gene only once in each data

set, a TF, like any other gene, could be a target of regulation in multi-
ple networks. In this paper, a TF network is referred to by its hub TF.
To improve readability, a TF will be represented by its unique upper
case gene symbol only. Since TF networks were constructed with
three different gene expression data sets, OvaryCy5Cy3, OvaryRa-

ts, OvaryCy5Cy3, OvaryRatio, and TestisCy5Cy3, were prepared for ovary and testis
Cy3 and OvaryRatio share identical set of TF probes.

OvaryCy5Cy3 OvaryRatio TestisCy5Cy3

205 105 163
554 554 690

2 1 9
250 52 220

1928 714 1046
373 105 262

10,357 8116 11,593
12,699 12,699 14,148

116 47 104
14 5 13
20 7 16
48 27 65

erg et al., 2005).

http://www.genenames.org/
http://www.r-project.org/
http://www.broad.mit.edu/gsea/
http://www.broad.mit.edu/gsea/
http://discover.nci.nih.gov/gominer/htgm.jsp
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Table 3
Selected IPA-significant HMR pathways among a total of 149, as ranked by number
of treatments, of which their DEGs are mapped to the pathways at a P-value cutoff
of 0.05. IPA mapping of DEGs to HMR is limited to those DEGs from 40 treatments
where FDRs for each set of DEG are <40% and treatment/control is ≥1.3-fold. IPA,
Ingenuity Pathway Analysis; HMR, human, mouse, rat; DEG, differentially expressed
gene.

Significant HMR pathways Treatments

Clathrin-mediated endocytosis 2, 13, 19, 20, 23, 33, 36, 37, 38, 43, 46
IGF-1 signaling 19, 21, 23, 38, 43, 46, 47, 51
Huntington’s disease signaling 14, 32, 33, 34, 35, 36, 46, 47
CTLA4 signaling in cytotoxic T

lymphocytes
13, 14, 15, 32, 33, 36, 38, 46

TGF-beta signaling 8, 23, 43, 46, 47, 51, 56
NRF2-mediated oxidative stress

response
1, 2, 6, 19, 22, 38, 46

Estrogen receptor signaling 6, 11, 15, 23, 43, 47, 51
VEGF signaling 20, 21, 22, 23, 46, 51
IL-8 signaling 22, 23, 38, 40, 47, 51
LPS-stimulated MAPK signaling 22, 23, 38, 46, 51
Jak/Stat signaling 1, 21, 23, 46, 51
PI3K/AKT signaling 20, 21, 23, 38, 46
IL-3 signaling 22, 23, 38, 46, 51
Hypoxia signaling in the

cardiovascular system
14, 22, 25, 36, 51

ERK/MAPK signaling 16, 21, 38, 46, 56
R.-L. Wang et al. / Aquatic

io, and TestisCy5Cy3, the descriptor for a TF network in the tables
ollows the format of DRTF (D. rerio transcription factor) – data set –
gilent probe ID, for example DRTFovaryRatio A 15 P110418. Only
nnotations for hub TFs are listed. Individual treatments are named
ccording to test chemical, exposure time in hours, gender, and tis-
ue type. For a chemical treatment where two test concentrations
ere evaluated, the name of the lower dosage treatment ends with

low”. Treatments are listed individually only in the first table and
epresented by numeric identifiers thereafter. Due to the size of
he data sets and complexity of analyses, only summary or selected
esults are reported. Complete outputs from various analyses are
rovided as supplementary materials and are available online.

.1. A zebrafish biological framework for studying EDC
echanisms

After preprocessing (see Section 2.3), data sets OvaryCy5Cy3,
varyRatio, and TestisCy5Cy3 contained 554, 554, and 690 TFs

espectively, out of a total of 951 annotated and compiled zebrafish
Fs. About 60–80% of input genes are networked by the ARACNE
lgorithm (Table 2). On average, TF networks built based on the
varyCy5Cy3 data set were the largest, followed by TestisCy5Cy3
nd OvaryRatio. This appears to be a function of sample size in each
ata set. A single gene could be a member across multiple networks
see gene networking frequency, Table 2). Some of them, such as
BX1 and SMAD2, were highly networked (data not shown).

UPGMA clustering of TF networks, KEGG pathways, and HPG-
xis compiled based on Jaccard distance offers a global view of
heir relative similarities (Fig. 2A and B; Supplemental Figure 1). A
onger branch between two pathways in the dendrogram indicates
greater distance, and all branches are relative to scale. Apparent in

he dendrogram with only KEGG pathways and HPG-axis compiled
re two relatively large clusters bordered by DRE00624/DRE00640
nd DRE04310/DRE04370, a number of smaller clusters, and some
uite distinct individual pathways (Fig. 2A). When all 1932 path-
ays and networks were considered together, most of the KEGG
athways clustered into a few distinct groups with a dozen
f them forming outliers scattered throughout the dendrogram
Supplemental Figure 1). Those KEGG pathways known to inter-
ct with one another tend to have more genes in common and
re therefore clustered closer together. Two such examples are the
luster containing N-glycan biosynthesis (DRE00510) and several
ulfate metabolic pathways (Supplemental Figure 1), and the clus-
er containing the TGF-beta signaling pathway (DRE04350, Fig. 2A).
verall, TF networks tended to form local clusters defined by one
f the three data sets.

Pathways and TF networks were evaluated for their relevance
o different mechanisms of endocrine disruption by two comple-

entary approaches: mapping DEGs from individual treatments
o HMR pathways by IPA, and conducting GSEA/E-GSEA on KEGG
athways and reverse-engineered TF networks (Fig. 1). To reduce
he impact of widely variable FDRs among DEG sets from different
reatments (data not shown) on HMR pathway mapping, an arbi-
rary criterion of less than 40% FDR and ≥1.3-fold change between
treatment and its control was imposed on each set of mapped
EGs. This eliminated DEGs from 18 of 58 treatment conditions.

n addition, of 137 KEGG pathways, only 33 met the minimum size
tandard of 15 to be included in GSEA. Among the disqualified path-
ays, most were too small in size and the rest were dropped due

o unsuccessful mappings between KEGG pathways and Agilent
robes. For the 1794 TF networks constructed, 1673 were quali-

ed for GSEA with a network size between 15 and 2000 genes, and
465 qualified for E-GSEA with both network size ≥15 and hub
Fs present in the individual gene expression data sets after filter-
ng. A total of 1412 pathways/networks were found to be chemical
reatment-significant at a P-value ≤ 0.05 or FDR ≤ 0.25 (Fig. 1): 149
IL-6 signaling 21, 22, 23, 46
IL-2 signaling 21, 23, 46, 51
P53 signaling 14, 57

HMR, 30 KEGG, 1232 TF networks, and HPG-axis compiled. Among
the significant TF networks were 515 across 53 treatments by E-
GSEA and 1126 across 35 treatments by GSEA, with 409 networks
overlapped between the two methods. Examined by the data sets,
GSEA-significant networks included 541 from TestisCy5Cy3, 364
from OvaryCy5Cy3, and 221 from OvaryRatio. E-GSEA has 238 from
TestisCy5Cy3, 187 from OvaryCy5Cy3, and 90 from OvaryRatio.

3.2. Application of the transcriptomics-based biological
framework in formulating new hypotheses

The zebrafish biological framework constructed in this study
could be examined in a variety of ways to formulate new hypothe-
ses for EDC regulatory mechanisms, such as by P-value or FDR
of different combinations of treatments, network similarity in a
dendrogram to a given targeted or otherwise better characterized
pathway, or number of treatments under which a pathway is sig-
nificant. They could also be used as gene sets in new studies to be
linked to additional chemical treatments by GSEA or E-GSEA. Below
we demonstrate the utility of this framework by ranking path-
ways/networks according to the number of chemical treatments
they are associated with and examining some of the top candidates
(Tables 3 and 4).

A number of top-ranked HMR pathways stand out: IGF-1, TGF-
beta, Jak–Stat, PI3K, IL-2, -3, -6 (Table 3). IGF-1 and TGF-beta are
significant under eight and seven chemical treatments respec-
tively, five of which are shared between the two pathways. The
p53 pathway was ranked relatively low. Table 4 lists a number
of TF networks ranked high in GSEA or E-GSEA, many of which,
such as ATF4, CSDC2, DPF2, TP53, are considered as top candidates
by both algorithms. In general, for a given significant TF network,
GSEA tended to find a greater number of associated treatments
than E-GSEA did. In contrast to this is the number of treatments
under which p53 signaling and TGF-beta signaling (as from HMR

and KEGG) are significant according to IPA and GSEA: two versus
six for p53 signaling, and seven versus zero for TGF-beta signaling.
This discrepancy could probably be explained by several factors
such as differences in statistical algorithms between IPA and GSEA,
multi-level regulation of p53 and TGF-beta, or even composition
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Fig. 2. (A and B) Nodes of networks/pathways adjoining HPG-axis compiled (HPG AXIS04022009) from UPGMA (Unweighted Pair Group Method with Arithmetic mean)
analysis of Jaccard distance matrix of either A: HPG-axis compiled/KEGG pathways only (all 138 shown); or B: a subsection of Supplemental Figure 1 showing only HPG-axis
compiled and its most closely related nodes among the 1932 in total. EDC-significant nodes according to GSEA (A) or both GSEA and E-GSEA (B) are highlighted in bold.
A branch length is relative and proportional to distance between two adjoining nodes or clusters. (A) Legacy pathways are not annotated. DRE00562, and DRE04070
were disqualified for GSEA due to small pathway size. Abbreviations: biosyn., biosynthesis; degrad., degradation; meta., metabolism; (B) Hub TF probes where annotations are
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available: BHLHB3L, basic helix–loop–helix domain containing, class B, 3 like; ESR1, estrogen receptor 1; ESR2B, estrogen receptor 2b; EVX1, even-skipped homeobox 1;
FIGLA, factor in the germline alpha; FOXA1, forkhead box A1; FOXA2, forkhead box A2; FOXA3, forkhead box A3; FOXH1, forkhead box H1; FOXN1, forkhead box N1; GFI1,
growth factor independent 1; HER9, hairy-related 9; HNF1B, HNF1 homeobox b; HOXA3A, homeo box A3a; HOXB5A, homeo box B5a; HOXC3A, homeo box C3a; HOXC6A,
homeo box C6a; HOXC9A, homeo box C9a; HOXD12A, homeo box D12a; LOC100002960, similar to LOC733301 protein; LOC100002960, similar to LOC733301 protein;
LOC100002960, similar to LOC733301 protein; LOC558030, transcription factor IIIA like; MXD3, MAX dimerization protein 3; MYCB, myelocytomatosis oncogene b; MYCL1A,
v-myc myelocytomatosis viral oncogene homolog 1, lung carcinoma derived (avian) a; NR1D1, nuclear receptor subfamily 1, group d, member 1; POU5F1, POU domain, class
5, transcription factor 1; RORAB, RAR-related orphan receptor A, paralog b.
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Table 4
Selected significant KEGG pathways and TF networks as ranked by the number of treatments under which a pathway/network is significant at a FDR ≤ 0.25. For comparison,
a network ranked high in either GSEA or E-GSEA is also cross-referenced under the other method if found significant. Additional key TFs biologically relevant to those high-
ranking pathway/networks are also included. There are a total of 30 KEGG and 1126 TF networks found significant by GSEA, 515 TF networks by E-GSEA. The significant TF
networks between the two approaches have an overlap of 409. If the networks of a hub TF built from multiple data sets are all significant, they are listed in an abbreviated format.
For example, A 15 P110418 (ovaryS/ovaryR/testisS) represents DRTFovaryCy5Cy3 A 15 P110418, DRTFovaryRatio A 15 P110418, and DRTFtestisCy5Cy3 A 15 P110418,
each of which is significant under its corresponding group of treatments delineated by a forward slash.

Significant pathways and networks Annotations Treatments

GSEA
A 15 P110418 (ovaryS/ovaryR/testisS) ATF4 activating transcription factor 4 6, 13, 18, 29, 30, 33, 35, 54/13, 18, 29, 30, 33/17, 30, 33, 50
A 15 P115702 (ovaryS/ovaryR/testisS) ATF7B, activating transcription factor 7b 17, 38, 50/38, 50/17, 38, 50
A 15 P117307 (ovaryR/testisS) CSDC2, cold shock domain containing C2, RNA binding 2/8, 18, 29, 30, 33
A 15 P111038 (ovaryS/ovaryR/testisS) DPF2L, D4 zinc and double PHD fingers family 2, like 17, 21, 33, 47/17, 50/2, 17, 18, 30, 33, 34, 35, 46
A 15 P104909 (ovaryS/ovaryR/testisS) DPF2, D4 zinc and double PHD fingers family 2 17, 38, 50/17, 21, 23, 38, 50/6, 17, 38, 50
A 15 P116913 (ovaryS/ovaryR/testisS) DPF2 38, 50/21, 23, 38, 50/17, 21, 38
A 15 P107347 (ovaryS/ovaryR/testisS) MEF2D myocyte enhancer factor 2d 17, 21, 38, 50/21, 23, 38, 50/17, 21, 23, 38, 42, 50
A 15 P121463 (ovaryS/ovaryR/testisS) MEF2D 38, 50/17, 23, 38, 50, 56/17, 38, 50
A 15 P105566 (ovaryS/ovaryR/testisS) MYBL2 myeloblastosis oncogene-like 2 17, 50/17, 50/17, 21, 23, 38, 41, 42, 50, 56
A 15 P106350 (ovaryS/ovaryR/testisS) MYBL2 6, 17, 21, 50/38, 50/17, 21, 23, 38, 50, 56
A 15 P119126 (ovaryS/testisS) KLF2B Kruppel-like factor 2b 50/21, 23, 37, 38, 39, 42, 50, 56
A 15 P108794 (ovaryS/ovaryR/testisS) KLF15 Kruppel-like factor 15 21, 38, 50/16, 21, 23, 38, 42/21, 38
KEGG PATHWAY DRE00510 N-glycan biosynthesis 3, 4, 7, 10, 15, 26, 27, 44, 46, 56
A 15 P102464 (ovaryS/testisS) PIAS2 protein inhibitor of activated STAT, 2 6/21
KEGG PATHWAY DRE04115 P53 signaling 10, 14, 15, 19, 39, 46
A 15 P112675 (ovaryS/ovaryR/testisS) TFDP1 transcription factor Dp-1 38, 50/38, 50/38, 50
A 15 P103068 (ovaryS/ovaryR) TGIF1 TGFB-induced factor homeobox 1 38, 50/21, 23, 38, 42, 50
A 15 P102660 (ovaryS/testisS) TP53 tumor protein p53 6, 17/2, 6, 19, 21, 23, 38, 56
A 15 P120536 (ovaryS/testisS) TP53 6, 50/6, 19, 21, 38
A 15 P118142 (testisS) TP73 8
A 15 P114243 (ovaryS) XBP1, X-box binding protein 1 6, 21, 38
A 15 P111423 (ovaryS/testisS) XBP1 6/6
A 15 P118771 (testisS) YBX1 Y box binding protein 1 2, 6, 17, 18, 33, 34, 46
A 15 P103153 (ovaryR/testisS) YY1 YY1 transcription factor 33, 40/8, 13, 17, 18, 29, 30, 33, 34, 35, 46

E-GSEA
A 15 P110418 (ovaryS/testisS) ATF4 23, 30, 33, 45/6, 33
A 15 P115702 (ovaryS/testisS) ATF7B 38, 50/17, 38, 50
A 15 P117307 (ovaryR/testisS) CSDC2 30/4, 15, 22, 29, 30, 33
A 15 P105678 (ovaryR) DPF1, D4 zinc and double PHD fingers family 1 2, 15, 33, 47
A 15 P116913 (ovaryS/testisS) DPF2 38/5, 38, 47
A 15 P104909 (ovaryS/testisS) DPF2 38, 50/38, 50
A 15 P111038 (testisS) DPF2L 2, 6
A 15 P121463 (ovaryR) MEF2D 21
A 15 P102464 (ovaryS/ovaryR/testisS) PIAS2 4, 6, 44/2/4, 6
A 15 P112675 (ovaryS/testisS) TFDP1 4/4, 38, 50
A 15 P102660 (ovaryS) TP53 6
A 15 P120536 (ovaryS/testisS) TP53 39/2, 4, 27
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A 15 P111423 (ovaryS/testisS) XBP1
A 15 P114243 (ovaryS/testisS) XBP1
A 15 P118771 (ovaryS/testisS) YBX1
A 15 P103153 (testisS) YY1

f these curated pathways themselves. IPA mapping uses Fisher’s
xact Test to evaluate non-random associations between DEGs
nd annotated canonical HMR pathways orthologous to zebrafish
enes, while GSEA/E-GSEA is a permutation-based approach to
ink zebrafish-specific KEGG pathways/TF networks to treatments.
he regulation of p53 and TGF-beta signaling occurs at the tran-
criptional, translational, and post-translational levels whereas the
icroarray studies performed here only evaluate the first. As to a

omparison between HMR pathways and TF networks, it should
e noted that the genome-wide TF networks constructed in this
tudy are tentative in nature, and subject to limitations of current
everse-engineering algorithms. In many cases, features included
n our TF networks also do not have any counterparts in HMR path-

ays, which are available only in very limited numbers and more
uitable for a general guidance of fundamental biological func-
ions impacted by EDCs. In effect, TF networks identified in Table 4
omplement the HMR pathways in Table 3 by fully leveraging the

ranscriptional changes and providing specific inferences as to the
mplications for signaling and metabolism.

The networks of individual TFs in KEGG pathway p53 signaling
KEGG DRE04115) and TGF-beta signaling (KEGG DRE04350) were
urther examined for their responses to the chemical treatments.
4, 6, 26/4, 6, 50
6, 45, 50/4, 27, 50
2/10
11

For p53 signaling, 35 of 50 genes were mapped to Agilent probes
with two (TP53 and TP73) curated as TFs. The networks of TP53 and
TP73 were impacted by a combined total of 13 treatments (Table 4),
with EE2 48 h male liver affecting the largest number of networks.
Only two treatments, FLU 48 h male testis and PRO 48 h male testis,
had a significant impact on both TP53/TP73 TF networks and KEGG
p53 signaling pathway. For an illustration, Fig. 3 shows one of the
TP53 networks and two of its closest network neighbors headed by
MXI1 and NEIL3, both of which are involved in tumorigenesis or
DNA repair (Rottmann and Lüscher, 2006; Takao et al., 2009) thus
functionally relevant to TP53. For the TGF-beta signaling pathway,
57 of 80 members were mapped to Agilent probes, 9 of which are
TFs (ID2A, ID2B, MYCB, PITX2A, SMAD1, SMAD2, SMAD3A, SMAD5,
and TFDP1L). An additional four annotated zebrafish TFs involved
in the pathway were also added (SMAD6, 7, 9, and TFDP1) to the
list. Among the networks for these 13 TFs, 12 and 9, respectively,
are significant by GSEA or E-GSEA, under a total of 15 treatments

involving 8 of the 10 test chemicals (Table 5). Only two such treat-
ments, FLU 24 h male testis and TRI 96 h female ovary low, also have
an impact on HMR TGF-beta pathway. The three treatments with
impact on the largest number of these TF networks were EE2 48 h
male liver, TRI 96 h female ovary, and PRO 96 h female brain.
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Fig. 3. The interactive TF networks of TP53 (DRTFtestisCy5Cy3 A 15 P120536) and two of its closest neighbors headed by MXI1 (DRTFtestisCy5Cy3 A 15 P103761) and NEIL3
(DRTFtestisCy5Cy3 A 15 P121124) as determined by network clustering. Shown are only target nodes having interactions with at least two out of the three hub TF probes.

Table 5
Thirty-eight TF networks containing 12 TFs from TGF-beta signaling pathway, and treatments under which they are significant by either GSEA or E-GSEA at FDRs ≤0.25. Out of
80 members of TGF-beta pathway, 9 are identified as TFs and mapped to Agilent probes. Four additional TFs (SMAD6, 7, 9, and TFDP1) are also added. If the networks of a hub
TF built from multiple data sets are all significant, they are listed in an abbreviated format. For example, A 15 P102595 (ovaryS/ovaryR/testisS) represents DRTFovaryCy5Cy3
A 15 P102595, DRTFovaryRatio A 15 P102595, and DRTFtestisCy5Cy3 A 15 P102595, each of which is significant under its corresponding group of treatments delineated
by a forward slash.

Significant TF networks Annotations Treatments

GSEA
A 15 P103330 (ovaryS/testisS) ID2A inhibitor of DNA binding 2, dominant negative helix–loop–helix protein, a 6/2
A 15 P102595 (ovaryS/ovaryR/testisS) ID2A 6, 38/23/17
A 15 P113186 (ovaryS) ID2B 50
A 15 P110041 (ovaryS) ID2B 50
A 15 P102524 (ovaryS/ovaryR) MYCB myelocytomatosis oncogene b 6, 38, 50/38, 50
A 15 P100897 (ovaryS/testisS) MYCB 6/6
A 15 P103771 (testisS) SMAD1 mothers against decapentaplegic homolog 1 17, 50
A 15 P100787 (testisS) SMAD1 17, 38, 50
A 15 P119732 (ovaryS/ovaryR/testisS) SMAD2 6, 17, 38, 50/17, 38, 50/17, 38, 50
A 15 P101086 (ovaryS/ovaryR/testisS) SMAD2 6/38/6
A 15 P120722 (testisS) SMAD3B 2
A 15 P113997 (ovaryS/ovaryR/testisS) SMAD5 6, 50/17/2
A 15 P111897 (testisS) SMAD6 38
A 15 P121028 (ovaryS/ovaryR/testisS) SMAD7 6/2, 3/6
A 15 P113640 (ovaryS/testisS) SMAD9 50/2
A 15 P111335 (ovaryS/ovaryR/testisS) TFDP1L transcription factor Dp-1, like 6/38, 50/6
A 15 P112675 (ovaryS/ovaryR/testisS) TFDP1 transcription factor Dp-1 38, 50/38, 50/38, 50
A 15 P117603 (ovaryS/testisS) TFDP1 33/6

E-GSEA
A 15 P103330 (testisS) ID2A 2
A 15 P110041 (testisS) ID2B 25, 33
A 15 P102524 (ovaryS) MYCB 6
A 15 P100897 (ovaryS/testisS) MYCB 4, 6/11
A 15 P119732 (ovaryS/ovaryR) SMAD2 4/31
A 15 P101086 (ovaryS) SMAD2 4, 6
A 15 P113997 (ovaryS) SMAD5 4, 6
A 15 P121028 (testisS) SMAD7 11
A 15 P113640 (testisS) SMAD9 2, 5
A 15 P111335 (ovaryS) TFDP1L 6, 35
A 15 P112675 (ovaryS/testisS) TFDP1 4/4, 38, 50
A 15 P117603 (ovaryS) TFDP1 51
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Table 6
Overlap between 209 genes from an incomplete, manually compiled HPG-axis and DEGs from 40 treatments where FDRs for each set of DEG are <40% and treatment/control
is ≥1.3-fold. Gene counts are based on unique gene symbols.

Treatments No. DEGs No. HPG-axis compiled genes in DEGs (gene symbols) Treatments No. DEGs No. HPG-axis compiled genes in DEGS

1 105 2 (LDLR, MAPK8) 23 206 3 (CALM2B, CALM3A, STAR)
2 175 8 (ATP2A1L, EGR2A, LDLR, MAPK3, VTG1, VTG2, VTG3, VTG6) 25 114 1 (CALM2B)
3 162 2 (ZP2.3, ZP3B) 32 41 0
4 172 4 (AR, CYP4, HSD17B3, LDLR) 33 77 1 (CEBPD)
5 193 7 (ACVRL1, ATP2A2B, CYP17A1, ITGA2B, PDIA4, VTG1, VTG2) 34 98 1 (ESR2B)
6 865 21 (ATP2A2B, CASK, CEBPD, CTSD, CYP1A, CYP4, ESR1, HSD11B2,

HSD17B12A, HSD17B3, IGF1RB, NS:ZF-A220, PLAA, PRKCBP1L,
TH2, VTG1, VTG2, VTG3, VTG6, WU:FB64H05, ZP2.3)

35 132 0

7 196 3 (CACNA1C, ZP2.3, ZP3B) 36 196 2 (SP1, VLDLR)
8 105 1 (MAPK8) 37 136 1 (ESR2B)
9 157 3 (CACNA1C, CCNB1, HSD17B3) 38 159 0

10 224 3 (CACNA1C, FSHR, ZP2.3) 40 111 0
11 143 1 (CYP4) 41 124 0
13 42 0 43 200 4 (GHITM, IGF1, INHBAA, LDLR)
14 76 0 46 84 1 (CAMSAP1)
15 62 1 (ESR2B) 47 130 5 (ATP2B3, CYP2K6, HSD11B2, IGF1RA,

NOS2)
16 134 2 (MAPKAPK5, PLA2G6) 49 52 1 (PLA2G6)
17 31 0 51 72 0
19 212 3 (CALM2B, CYP17A1, DHCR7) 52 75 0
20 142 3 (CACNA1C, HSD17B3, PDIP5) 54 206 2 (INHBAA, ZP3)
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21 285 3 (CAMSAP1, CYP19A1A, IGF1RA)

22 124 3 (CCNB1, CYP19A1A, STAR)

All 10 test chemicals are known or hypothesized to interact
ith targets within the HPG-axis. But, only one treatment, EE2

8 h male testis, was found to have a significant effect on HPG-
xis compiled as a group according to GSEA. When all 209 genes
n HPG-axis compiled were mapped to the DEGs from 40 treat-

ents where each set of DEG had a FDR < 40% and treatment/control
1.3-fold (Table 6), a total of 56 genes responded to 30 treatments

nvolving all 10 chemicals. Measured by the number of HPG genes
hanged, the most influential treatments included EE2 48 h male
iver, VIN 48 h male testis, and EE2 48 h male testis. Some of the
PG genes altered by the greatest number of treatments were
ACNA1C, ZP2.3, LDLR, HSD17B3, CALM2B, VTG2, VTG1, PLA2G6,

NHBAA, and HSD11B2. When 16 TF networks, representing 6 out

f a total of 10 TFs from HPG-axis compiled, were individually eval-
ated, they were found significant for 15 treatments encompassing
ine out of 10 chemicals (Table 7). The three most influential treat-
ents, measured by number of networks per treatment, were

able 7
ixteen TF networks representing six TFs in the HPG-axis compiled, and treatments un
PG-axis compiled, 10 are identified as TFs and mapped to 13 unique Agilent probes.
re listed in an abbreviated format. For example, A 15 P100370 (ovaryS/ovaryR/testisS) r
RTFtestisCy5Cy3 A 15 P100370, each of which is significant under its corresponding gr

Significant TF networks Annotations

GSEA
A 15 P100370 (ovaryS/ovaryR/testisS) ESR1 estrogen receptor 1
A 15 P101177 (ovaryS/ovaryR/testisS) CEBPG CCAAT/enhancer b
A 15 P109417 (ovaryS/testisS) CEBPG
A 15 P108101 (testisS) ESR2B estrogen receptor 2
A 15 P109325 (ovaryS/testisS) ESR2B
A 15 P115095 (testisS) ESR2B
A 15 P113550 (ovaryR/testisS) AR androgen receptor
A 15 P119478 (testisS) EGR2A early growth respo
A 15 P119871 (testisS) EGR2B early growth respo

E-GSEA
A 15 P100370 (ovaryS/ovaryR/testisS) ESR1
A 15 P101177 (ovaryS/testisS) CEBPG
A 15 P109417 (ovaryS/testisS) CEBPG
A 15 P109325 (testisS) ESR2B
A 15 P113550 (testisS) AR
A 15 P119871 (testisS) EGR2B
56 347 9 (ATP2A1L, CACNA1C, CALM2B, CASK,
CYP1A, HSD11B2, INHBAA, PDIA4,
PLA2G6)

57 106 1 (FST)

TRI 96 h female ovary, EE2 48 h male liver, and EE2 48 h male
testis.

Network clustering based on shared gene memberships
could potentially shed additional light on biological mechanisms
impacted by the putative EDCs. Of particular interest here are
those TF networks and pathways overlapping, thus potentially
interacting, with the HPG-axis, and those ranked high by various
approaches, such as ATF4, CSDC2, TP53, p53 signaling, and TGF-
beta signaling. In a dendrogram limited to HPG-axis compiled and
KEGG pathways only, most of the chemical treatment-significant
KEGG pathways by GSEA share substantial similarities to HPG-
axis compiled. There are two distinct clusters juxtaposing HPG-axis
compiled as neighbors. The first contains TGF-beta, p53 and a few

other signaling pathways, and the other includes Jat–Stat, MAPK,
and apoptosis (Fig. 2A). When all the TF networks were included
with KEGG pathways and HPG-axis compiled in clustering, TP53
and XBP1 networks cluster with this same group of KEGG path-

der which they are significant at FDRs ≤ 0.25. Out of a total of 209 members in
If the networks of a hub TF built from multiple data sets are all significant, they
epresents DRTFovaryCy5Cy3 A 15 P100370, DRTFovaryRatio A 15 P100370, and
oup of treatments delineated by a forward slash.

Treatments

6/2, 6/2, 8
inding protein (C/EBP), gamma 17, 38, 50/17, 46, 50/17, 50

6, 33/6, 50
b 6

13/6, 21, 38, 50
6
23, 38, 50/17, 38, 50

nse 2a 2
nse 2b 2, 6

2/2/2
50/50
4, 6, 26/30
34
50
2
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ays (Supplemental Figure 1). The cluster containing HPG-axis
ompiled, however, is now composed of a number of TF networks
eaded primarily by TFs from gene families of HOX and FOX, and
few other nuclear receptors (Fig. 2B). Some of the top-ranked TF
etworks are also quite similar to one another (e.g., cluster with
RTFovaryCy5Cy3 A 15 P110418, Supplemental Figure 1), where
losely related ATF4 and YY1 are clustered with such significant TF
etworks as TGIF1, SMAD5, CSDC2, and TFDP1. All matched genes
etween HPG-axis compiled and its closely related KEGG path-
ays/TF networks corresponding to Fig. 2A and B are provided in

upplemental Tables 1 and 2.

. Discussion

The biological framework constructed in this study, made
p of previously annotated signaling pathways and hundreds of
everse-engineered TF networks prioritized by their statistical
ssociations with chemical treatments, represents a step for-
ard toward studying gene regulatory mechanisms underlying

hemical responses in zebrafish and related species. To overcome
nsufficient zebrafish genome annotations in terms of both gene
dentity and biological pathways, the framework was developed
y employing three independent but complementary approaches,
PA mapping of DEGs to HMR pathways, GSEA/E-GSEA of networks
nd pathways, and UPGMA analysis of network/pathway similari-
ies. Such a framework should contribute to the advancement of
ebrafish in becoming a fully functional model system for toxi-
ogenomics. Depending upon targets of interest, prioritization of
athways/networks could be conducted in a variety of ways to for-
ulate new hypotheses for test chemicals, such as the HPG-active

ompounds assessed in this study.
The main goal of reverse-engineering TF networks in this study

as to achieve reasonable accuracy in placing target genes into
given network so that the entire group of functionally related

enes could be evaluated as a whole for responses to treatment
onditions. Therefore, current issues in recovering correct gene
opology/connectivities from constructing large networks (Hache
t al., 2009; Kim et al., 2009) is not necessarily germane to the
bjectives of our study. Ideally still, the quality of TF networks
hould be assessed against a collection of empirically based, well-
urated pathways. Two issues make such a quality assessment
ifficult for our study: almost half the Agilent zebrafish probes
re not annotated and there are very few empirically constructed
F networks available to enable a robust evaluation. Consider, for
xample, SMAD and ESR, two TFs with well-understood pathways
TGF-beta signaling and estrogen receptor signaling). A total of
7 of 80 members of KEGG TGF-beta signaling pathway, some
rom multi-gene families, are mapped to Agilent probes. Since
GF-beta itself, or transforming growth factor, is not consid-
red a TF, we turned to a group of SMADs which are both TFs
nd important components of the pathway. There should be a
ignificant overlap between SMAD networks and TGF-beta sig-
aling. Of the 22 SMAD networks constructed across the three
ata sets, the one overlapping the TGF-beta signaling pathway
he most, DRTFovaryCy5Cy3 A 15 P100787, contains nine mem-
ers of the pathway including BMPR1A, BMPR1B, CUL1A, RPS6KB1,
MAD1, SMAD5, TGFB3, TGFBR2, and BMP7B. Also found in this
etwork are a few TFs known to be SMAD partners. In the case
f ESR, only 9 out of 19 members of estrogen signaling path-
ay (as defined by GO:0030520) are mapped to Agilent probes.

mong the 10 ESR1/ESR2 networks constructed, their only matches
ith the estrogen signaling pathway are the receptors them-

elves. While these two examples illustrate that TF networks
everse-engineered based upon microarray data likely vary in
uality, the TF networks should still provide a method to formu-
ology 98 (2010) 230–244 241

late new hypotheses about potential MOAs of chemicals such as
EDCs.

Several HMR pathways, ranked high for chemical responses
as measured by number of treatments per significant path-
way (Table 3), have extensive cross-talk. The IL-2, -3, -6, PI3K,
and Jak–Stat pathways apparently all interact with one another
(Rawlings et al., 2004). As a signaling pathway for many cytokines
and growth factors, Jak–Stat activation promotes cell proliferation,
differentiation, migration, and apoptosis. TGF-beta signaling shares
similar functions as Jak–Stat (Dijke and Hill, 2004), and is regulated
by Jak–Stat through interferon-gamma-activated STAT pathway on
SMADs (Ulloa et al., 1999). Furthermore, PIAS, a key inhibitor of
Jak–Stat, also regulates SMAD along with tumor suppressor p53 and
androgen receptor (Shuai and Liu, 2003). Cellular responses to TGF-
beta signaling rely on interactions between p53 family members
and SMAD (Cordenonsi et al., 2003). Furthermore, in epithelial cells,
TGF-beta induces apoptosis via p53 and a DNA-damage-sensitive
kinase through SMAD7 (Zhang et al., 2006). P53 signaling coor-
dinates cellular responses to a variety of stresses such as DNA
damage, hypoxia, heat/cold shock, and oncogene activation, lead-
ing to cell cycle arrest, cellular senescence, and apoptosis (Hofseth
et al., 2004; Levine et al., 2006). IGF-1 interfaces with p53 via
MDM-2, an ubiquitin ligase. While signaling pathways involved in
these fundamental cellular functions and developmental processes
are conserved across animal species (Pires-daSilva and Sommer,
2003), there are still likely some signaling mechanisms unique to
fish, and/or oviparous vertebrates in general, that distinguish the
species biochemically, physiologically, and developmentally from
mammals such as human, rat, and mouse (HMR). In this regard,
zebrafish-specific TF networks constructed in this study and asso-
ciated with EDC chemicals could provide additional insights into
toxicity mechanisms that are more specific and germane to fish
species than the HMR pathways.

The top findings from GSEA and E-GSEA, as ranked by num-
ber of treatments per significant network, are enriched with many
TFs known to be mutually interactive. They are primarily involved
in cellular functions such as cellular stress, cell cycle control, and
apoptosis, and thus largely consistent with the significant HMR
pathways described above. The KEGG p53 signaling pathway was
quite responsive to the test chemicals, as were the networks of
TP53 (an alias of p53), one of the two identified TFs in the p53
pathway. A total of 12 different treatments from 7 chemicals have
a significant impact on TP53 networks, with EE2 and FLU the most
common. Both ATF4 and XBP1 are members of CREB/ATF family
(cAMP response element binding/activating transcription factor),
a class of TFs containing the basic leucine zipper (b-zip) structure.
ATF4 is a member of both GnRH and MAPK signaling pathways
(http://www.genome.jp/kegg/) and an interacting partner to many
proteins including the GABAB receptor (Ritter et al., 2004). ATF4
is induced by stress signals such as anoxia/hypoxia, endoplasmic
reticulum (ER) stress, and oxidative stress (Ameri and Harris, 2008)
and involved in fertility and cell proliferation and differentiation.
Like ATF4, XBP1 is also involved in ER stress by activating the
unfolded protein response pathway (Koong et al., 2006). In humans
and yeast, XBP1 interacts with both ATF4 and ATF6 through CREBZF,
another b-zip class TF. Additional high-ranked TFs sharing sim-
ilar functions in cell cycle and apoptosis include DPF2 (Gabig et
al., 1994), MYBL2 (Sala, 2005), MEF2D (Potthoff and Olson, 2007),
and TFDP1 (Hitchens and Robbins, 2003). TFDP1 is a member of
both cell cycle and TGF-beta signaling in KEGG annotations. TFDP1-
mediated apoptosis may be p53-dependent or -independent. Some

of these hub TFs from the top-ranked TF networks interact with one
another. TGIF1 is a co-repressor of SMAD (Wotton et al., 1999). YY1
is a ubiquitous and multifunctional TF fundamental to embryoge-
nesis, cell differentiation and proliferation (Gordon et al., 2006). It
shares sequence homology to KLF2B and KLF15, Drosophila Krup-

http://www.genome.jp/kegg/
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el proteins with C2H2 zinc finger motifs. YY1 interacts with a
ariety of proteins, including YBX1, ATF, p53, SP1, SMAD, and TGF-
eta. CSDC2 and YBX1 are both members of cold shock domain
rotein family, which bind to both DNA and RNA (Matsumoto and
olffe, 1998). While CSDC2 is relatively poorly characterized, YBX1

s expressed throughout embryogenesis and ubiquitously in adult
nimals. It interacts with SMAD3 and p53 among other genes, and
lays a role in oncogenesis (Wu et al., 2007). Coincidentally, YBX1

s also one of the most networked genes among the TF networks
onstructed in this study. And activity/stability of YY1, p53, andro-
en receptor, estrogen receptor, SMAD7, STAT3 (Jak–Stat signaling),
nd E2F (a partner of TFDP1) could all be modulated through protein
cetylation/deacetylation (Glozak et al., 2005). Clearly, similar to
MR pathways discussed earlier, TF networks identified by GSEA/E-
SEA and ranked high in this prioritization scheme also tend to be
utually interactive and share similar cellular functions, thus offer-

ng insights into gene regulatory mechanisms underlying biological
esponses to exposure of these chemicals.

The degree of impact of the 10 putative EDCs used in this study
n known HPG-axis compiled genes (Villeneuve et al., 2007) varied
ased on the analysis considered. According to GSEA, the chemicals
eemed to have little impact on HPG-axis compiled as a whole. The
DR rates for HPG-axis compiled in GSEA exceeded 0.5 in 54 out
f the 58 treatments. However, we note that the full complement
f 209 genes associated with HPG-axis compiled represents vari-
us pathways, processes, and regulatory features that are spatially
eparated from one another in four distinct tissue compartments,
s well as distinct cell types within those compartments. There-
ore, we would not really expect to see significant impacts on this
oncohesive group of genes as a whole within the narrow scope of
hemical/dose/duration/tissue captured by each individual treat-
ent. However, an examination of individual genes from HPG-axis

ompiled resulted in quite a different picture. While on average
ery few members of HPG-axis compiled responded to any given
hemical treatment, likely as a result of low statistical power due
o a small sample size (Pawitan et al., 2005), in combination a total
f 56 HPG genes, or 27% of the group, were significantly changed by
0 treatments involving all 10 test chemicals. When the networks
f all 10 hub TFs contained in HPG-axis compiled were examined
ndividually by GSEA and E-GSEA, 6 of them were changed by 15
reatments involving all the chemicals except VIN. Interestingly,
he 56 differentially expressed HPG genes contained only 4 of the
0 TFs. None of the top 10 DEGs among the 56, as ranked by num-
er of treatments per DEG, was a TF and each of these 10 DEGs
esponded to 3–5 treatments. Since the HPG-axis really should be
iewed as a network made up of many peripheral sub-networks
ontinuously branching-out and operating in multiple different tis-
ues, evaluations of chemical impacts by GSEA are obviously highly
ependent on what criteria are used to determine the gene mem-
erships of HPG-axis compiled. Overall, our findings suggest that
PG-axis compiled is substantially impacted by the 10 EDCs tested

n this study, and that the members of HPG-axis compiled are not
qually affected by the chemicals. Further, our results indicate that
ome of its peripheral TF networks may be specifically targeted by
he test chemicals.

In a three-dimensional network space, networks with shared
ene nodes should have some functional interactions, or cross-talk.
hen measured by Jaccard distance based on the degree of node-

haring, those networks with a greater overlap should become
loser neighbors in a dendrogram. There are many instances of this
elationship present in the dendrograms constructed in this study

or TF networks and KEGG pathways. Given the impact of the 10 test
hemicals on HPG-axis compiled, p53 and TGF-beta signaling path-
ays, perhaps it should not be surprising to find that, when limited

o only HPG-axis compiled and KEGG pathways, the two clusters
losest to HPG-axis compiled are represented by TGF-beta/p53 and
ology 98 (2010) 230–244

a few other pathways known to be involved in cell cycle, stress
responses, and apoptosis. In fact, many of these neighboring KEGG
pathways have extensive cross-talk among themselves in order to
exert their regulation of, and impact on, these cellular functions
(Guo and Wang, 2009). The androgen receptor (AR) and estro-
gen receptor (ESR1), both TFs in HPG-axis compiled, also interact
with TGF-beta through SMAD proteins (Moustakas et al., 2001).
Interestingly, when considered in the context of an all-inclusive
dendrogram of 1932 nodes (Fig. 2B, Supplemental Figure 1), the TF
networks closest to HPG-axis compiled are mostly headed by TFs
with known or potential involvement in endocrine responses. Both
FIGLA and POU5F1 are oocyte-specific genes critical to early fol-
liculogenesis or embryogenesis (Pangas and Rajkovic, 2006). While
FOXH1 interacts with SMAD to mediate TGF-beta signals (Feng and
Derynck, 2005), FOXA proteins appear to be partners of nuclear
hormone receptors (Hannenhalli and Kaestner, 2009). And, the
expression of HOX genes is regulated by several hormones and their
receptors, and disrupted by EDCs (Daftary and Taylor, 2006). One
final example of cross-talk features some of the TF networks ranked
high in our analysis, ATF4, YY1, TGIF1, SMAD5, PIAS1, CSDC2, and
TFDP1. As discussed above, the interactions among many of these
TFs have been documented in literature. Again, they are located
in the same cluster. All of these examples strongly suggest that
clustering based on the similarities among TF networks/pathways
could serve as a powerful tool to explore biological mechanisms
underlying responses to endocrine-active chemicals.

5. Conclusions

Using several independent and complementary approaches, we
have constructed a transcriptomics-based biological framework
made up of hundreds of statistically prioritized signaling pathways
and TF networks for studying biological responses to chemicals
known to affect endocrine function. While the quality of these
TF networks may vary due to limitations in the algorithms of
reverse-engineering and sole dependence on gene transcriptional
profiling data, we have demonstrated the utility of this framework
in formulating new hypotheses about EDC toxicity mechanisms.
The potential biological pathways underlying the tested chemicals
have been expanded from initially a single, somewhat subjectively
defined HPG-axis compiled to several well-curated KEGG pathways
including TGF-beta, p53 signaling, and their cross-talking network
neighbors, and to a still greater number of tentative TF networks
peripheral to them, all of which could have a profound impact on
cellular functions such as stress response, cell cycle, and apoptosis.
The increased specificity among these testable hypothetical toxic-
ity pathways could be utilized in the future to design experiments
focusing on various aspects of EDC mechanisms. Furthermore, these
putative pathways and their hub TFs could potentially provide can-
didates for the much-needed mechanism-based biomarkers. The
mutants of genes in these pathways would facilitate the discovery
and development of more specific, mechanism-based end points
relevant to risk assessment. Perhaps just as significant, the biologi-
cal framework constructed in this study would also greatly reduce
gene dimensionality, thus bypassing the dilemma of small sample
size/large number of variables encountered in typical toxicoge-
nomics studies. And, it could be further improved in the future
by adding more samples perturbed under a greater variety of con-
ditions, using more sophisticated reverse-engineering algorithms,
and having better genome annotations.
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